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Abstract: In this paper, a new class of sets called fuzzy generalized semi preregular (fgspr) closed sets and 

open sets in fuzzy topological spaces are introduced and its properties are studied. Further, fgspr-closure, 

fgspr-interior and fgspr-frontier concepts are also defined and investigated. As an application of this set, we 
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I. Introduction 

The concept of fuzzy sets and fuzzy set operations were first introduced by Zadeh [19]. Subsequently, 

several authors have applied various basic concepts from general topology to fuzzy sets and developed the 

theory of fuzzy topological spaces. The notion of fuzzy sets naturally plays a very significant role in the study of 

fuzzy topology introduced by Chang [6].  The concept of generalized semi preregular closed sets was introduced 

and its properties were studied by Govindappa Navalagi et al [8] in 2010.  

In this paper fuzzy generalized semi preregular closed set is introduced and its properties are studied. 

Further, fgspr-closure, fgspr-interior and fgspr-frontier are also defined and investigated. As an application of 

these fuzzy sets, two new spaces namely fuzzy semi preregular T1/2  space and fuzzy semi preregular T1/2
∗  space 

are introduced and studied in fuzzy topological spaces. It is observed that every fuzzy semi preregular T1/2
∗  

space is fuzzy semi preregular T1/2 space and also fuzzy T1/2 space.  

 

II. Preliminaries 
Let X, Y and Z be fuzzy sets.  Throughout this paper  X, τ ,  Y, σ  and (Z, η) (or simply X, Y and Z) mean 

fuzzy topological spaces on which no separation axioms are assumed unless explicitly stated. Let us recall the 

following definitions which we shall require later. 

Definition 2.1: A fuzzy set λ in a fuzzy topological space  X, τ  is called  

(1) a fuzzy preopen set [4] if λ ≤ int(cl λ ) and a fuzzy preclosed set if cl int λ  ≤ λ. 

(2) a fuzzy semi-open  set [1] if λ ≤ cl(int λ ) and a fuzzy semi-closed set if  int(cl λ ) ≤ λ. 
(3) a fuzzy semi-preopen set[16]if λ ≤ cl(int(cl λ )) and a fuzzy semi-preclosed set if int(cl int λ ) ≤ λ. 
(4) a fuzzy pre semi-open set [11] if λ ≤ int(cl(int λ )) and a fuzzy pre semi-closed set if            

cl int(cl λ ) ≤ λ. 
(5) a fuzzy α-open set [4] if λ ≤ int(cl(int λ )) and a fuzzy α-closed set if cl int(cl λ ) ≤ λ. 

(6) a fuzzy regular open set [1] if int cl λ  = λ and a fuzzy regular closed set if cl int λ  = λ. 

Definition 2.2:  A fuzzy set λ in a fuzzy topological space  X, τ  is called  

(1) a fuzzy generalized closed set (briefly, fg-closed) [2] if cl λ  ≤ μ, whenever λ ≤ μ and μ is a fuzzy 

open set in X. 

(2) a generalized fuzzy semi-closed set (briefly, gfs-closed) [3] if scl λ  ≤ μ, whenever λ ≤ μ and μ is a 

fuzzy semi-open set in X. 

(3) a fuzzy regular generalized closed set (briefly, frg-closed) [12] if cl λ  ≤ μ, whenever λ ≤ μ and μ is a 

fuzzy regular open set in X. 

(4) a fuzzy semi generalized closed set (briefly, fsg-closed) [10] if scl λ  ≤ μ, whenever λ ≤ μ and μ is a 

fuzzy semi-open set in X. 

(5) a fuzzy generalized semi-closed set (briefly, fgs-closed) [14] if scl λ  ≤ μ, whenever λ ≤ μ and μ is a 

fuzzy open set in X. 
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(6) a fuzzy generalized pre closed set (briefly, fgp-closed) [7] if pcl λ  ≤ μ, whenever λ ≤ μ and μ is a 

fuzzy open set in X. 

(7) a fuzzy generalized semi-pre closed set (briefly, fgsp-closed) [13] if spcl λ  ≤ μ, whenever λ ≤ μ and 

μ is a fuzzy open set in X. 

(8) a fuzzy semi-pre generalized closed set (briefly, fspg-closed) [15] if spcl λ  ≤ μ, whenever λ ≤ μ and 

μ is a fuzzy semi-pre open set in X. 

(9) a fuzzy generalized preregular closed set (briefly, fgpr-closed) [18] if pcl λ  ≤ μ, whenever λ ≤ μ and 

μ is a fuzzy regular open set in X. 

Definition 2.3:  A fuzzy topological space  X, τ is said to be  

(1) a fuzzy T1/2 -space [2] if every fg-closed is fuzzy closed. 

(2) a fuzzy semi T1/2 -space [10] if every fsg-closed is fuzzy semi closed. 

(3) a fuzzy pre T1/2 -space [5] if every fpg-closed is fuzzy pre closed. 

(4) a fuzzy semi pre T1/2-space [13] if every fgsp-closed is fuzzy semi-preclosed. 

(5) a fuzzy semi pre T1/3-space [13] if every fgsp-closed is fuzzy pre semi closed. 

(6) a fuzzy pre semi T1/2-space [13] if every fps-closed is fuzzy semi-preclosed. 

 

III. Fuzzy Generalized Semi Preregular Closed Sets 
In this section, a new class of fuzzy generalized closed sets called a fuzzy generalized semi preregular 

closed set is defined and study its properties. 

Definition 3.1: A fuzzy set λ of a fuzzy topological space  X, τ  is called a fuzzy generalized semi preregular 

closed set (briefly, fgspr-closed) if spcl λ  ≤ μ, whenever λ ≤ μ and μ is a fuzzy regular open set in  X, τ . 

By FGSPRC we mean the family of all fgspr-closed subsets of the space  X, τ . 
Theorem 3.2: Every fuzzy closed set is a fgspr-closed set. 

Proof: Let λ be a fuzzy closed set in a fuzzy topological space  X, τ . Suppose that λ ≤ μ, where μ is fuzzy 

regular open in X. Since every fuzzy closed set is a fuzzy semi-pre closed set, spcl λ  ≤ cl λ = λ ≤  μ.      

(i.e) spcl λ  ≤ μ.  Hence λ is a fgspr-closed set in X. 

The following example shows that the converse of the above theorem is not true. 

Example 3.3: Let X = {a, b, c}, λ1 = {(a, 0.3), (b, 0.5), (c, 0.2)} and λ2 = {(a, 0.2), (b, 0.4), (c, 0.1)} be fuzzy 

sets of X.  Let τ = {0, λ1, 1}, then λ2 is a fgspr-closed set but not a fuzzy closed set in X. 

Theorem 3.4: Every fuzzy preclosed set is a fgspr-closed set in X. 

Proof: Let λ be a fuzzy preclosed set in a fuzzy topological space  X, τ . Suppose that λ ≤ μ, where μ is fuzzy 

regular open in X. Since every fuzzy preclosed is a fuzzy semi preclosed, spcl λ  ≤ pcl λ = λ ≤  μ.          

(i.e) spcl λ  ≤ μ.  Hence λ is a fgspr-closed set in X. 

The following example shows that the converse of the above theorem is not true. 

Example 3.5: Let X = {a, b, c}, λ1 = {(a, 0.3), (b, 0.5), (c, 0.4)}, λ2 = {(a, 0.1), (b, 0.3), (c, 0.2)} and                 

λ3 = {(a, 0.2), (b, 0.5), (c, 0.3)} be fuzzy sets of X.  Let τ = {0, λ1, λ2, 1}, then λ3 is a fgspr- closed set but not a 

fuzzy preclosed set in X. 

Theorem 3.6: Every fuzzy α-closed set is a fgspr-closed set in X. 

Proof: Let λ be a fuzzy α-closed set in a fuzzy topological space  X, τ . Suppose that λ ≤ μ, where μ is fuzzy 

regular open in X. Since every fuzzy α-closed set is a fuzzy pre closed set, spcl λ ≤ pcl λ ≤ αcl λ = λ ≤  μ. 

(i.e) spcl λ  ≤ μ.  Hence λ is a fgspr-closed set in X. 

The following example shows that the converse of the above theorem is not true. 

Example 3.7: In example 3.5, the fuzzy set λ3 is a fgspr-closed set but not a fuzzy α-closed set in X. 

Theorem 3.8: Every fuzzy regular generalized closed set is a fgspr-closed set in X. 

Proof: Let λ be a fuzzy regular generalized closed set in a fuzzy topological space  X, τ . Suppose that λ ≤ μ, 

where μ is fuzzy regular open in X. Since every fuzzy closed set is fuzzy semi pre closed set, spcl λ  ≤ cl λ ≤
 μ. (i.e) spcl λ  ≤ μ.  Hence λ is a fgspr-closed set in X. 

The following example shows that the converse of the above theorem is not true. 

Example 3.9: In example 3.5, the fuzzy set λ3 is a fgspr-closed set but not a fuzzy regular generalized closed set 

in X. 

Theorem 3.10: Every fuzzy generalized semi-pre closed set is a fgspr-closed set in X. 

Proof: Let λ be a fuzzy generalized semi-pre closed set in a fuzzy topological space  X, τ . Suppose that λ ≤ μ, 

where μ is fuzzy regular open in X. Since every fuzzy regular open set is fuzzy open set, spcl λ  ≤ μ.  Hence λ 

is a fgspr-closed set in X. 

The following example shows that the converse of the above theorem is not true. 

Example 3.11: Let X = {a, b, c}, α ={(a, 1), (b, 0), (c, 0)}, β = {(a, 0), (b, 1), (c, 0)}, γ ={(a, 1), (b, 1), (c, 0)} 

and η = {(a, 1), (b, 0), (c, 1)} be fuzzy sets of X. Let τ = {0, α, β, γ, η, 1}, then α is a fgspr-closed set but not a 

fgsp-closed set in X. 

 



Fuzzy Generalized Semi Preregular Closed… 

                                      www.ijhssi.org                                                        65 | Page 

Theorem 3.12: Every fgpr-closed set is a fgspr-closed set in X. 

Proof: Let λ be a fgpr-closed set in a fuzzy topological space  X, τ . Suppose that λ ≤ μ, where μ is fuzzy 

regular open in X. Since λ is fgpr-closed set,  pcl λ  ≤ μ.  Since spcl λ  ≤ pcl λ , for any fuzzy set λ, 

spcl λ  ≤ μ.  Hence λ is a fgspr-closed set in X. 

The following example shows that the converse of the above theorem is not true. 

Example 3.13: In example 3.5, the fuzzy set λ3 is a fgspr-closed set but not a fgpr-closed set in X. 

Theorem 3.14: Every fuzzy generalized preclosed set is a fgspr-closed set in X. 

Proof: Let λ be a fuzzy generalized preclosed set in a fuzzy topological space  X, τ . Suppose that λ ≤ μ, where 

μ is fuzzy regular open in X. Since every fuzzy generalized preclosed set is fgpr-closed [12], by Theorem 3.12 

spcl λ  ≤ μ.  Hence λ is a fgspr-closed set in X. 

The following example shows that the converse of the above theorem is not true. 

Example 3.15: In example 3.5, the fuzzy set λ3 is a fgspr-closed set but not a fuzzy generalized preclosed set in 

X. 

Theorem 3.16: Every fuzzy generalized closed set is a fgspr-closed set in X. 

Proof: Let λ be a fuzzy generalized closed set in a fuzzy topological space  X, τ . Suppose that λ ≤ μ, where μ is 

fuzzy regular open in X. Since every fuzzy generalized closed set is fgp-closed [6], by Theorem 3.14   

spcl λ  ≤ μ.  Hence λ is a fgspr-closed set in X. 

The following example shows that the converse of the above theorem is not true. 

Example 3.17: In example 3.5, the fuzzy set λ3 is a fgspr-closed set but not a fuzzy generalized closed set in X. 

Theorem 3.18: Every fuzzy semi-pre closed set is a fgspr-closed set in X. 

Proof: Let λ be a fuzzy semi-pre closed set in a fuzzy topological space  X, τ . Suppose that λ ≤ μ, where μ is 

fuzzy regular open in X. Since every fuzzy semi-pre closed set is fgsp-closed set, by Theorem 3.10 spcl λ  ≤ μ.  
Hence λ is a fgspr-closed set in X. 

The following example shows that the converse of the above theorem is not true. 

Example 3.19: Let X = {a, b, c}, λ1 = {(a, 0.3), (b, 0.5), (c, 0.4)}, λ2 = {(a, 0.1), (b, 0.3), (c, 0.2)} and               

λ3 = {(a, 0.2), (b, 0.5), (c, 0.4)} be fuzzy sets of X. Let τ = {0, λ1, λ2, 1}, then λ3 is a fgspr-closed set but not a 

fuzzy semi-pre closed set in X 

Theorem 3.20: Every fuzzy pre semi closed set is a fgspr-closed set in X. 

Proof: Let λ be a fuzzy pre semi closed set in a fuzzy topological space  X, τ . Suppose that λ ≤ μ, where μ is 

fuzzy regular open in X. Since every fuzzy pre semi closed set is fgsp-closed set, by Theorem 3.10 spcl λ ≤ μ.  
Hence λ is a fgspr-closed set in X. 

The following example shows that the converse of the above theorem is not true. 

Example 3.21: Let X = {a, b, c}, λ1 = {(a, 0.3), (b, 0.5), (c, 0.4)}, λ2 = {(a, 0.1), (b, 0.5), (c, 0.4)} and               

λ3 = {(a, 0.1), (b, 0.3), (c, 0.2)} be fuzzy sets of X. Let τ = {0, λ1, λ3, 1}, then λ2 is a fgspr-closed set but not a 

fuzzy pre semi closed set in X. 

Theorem 3.22: Every fuzzy semi-closed set is a fgspr-closed set in X. 

Proof: Let λ be a fuzzy semi-closed set in a fuzzy topological space  X, τ . Suppose that λ ≤ μ, where μ is fuzzy 

regular open in X. Since every fuzzy semi-closed set is fuzzy semi-preclosed set, by Theorem 3.18 spcl λ  ≤ μ.  
Hence λ is a fgspr-closed set in X. 

The following example shows that the converse of the above theorem is not true. 

Example 3.23: Let X = {a, b, c}, λ1 = {(a, 0.3), (b, 0.5), (c, 0.4)} and λ2 = {(a, 0.2), (b, 0.5), (c, 0.4)} be fuzzy 

sets of X. Let τ = {0, λ1, 1}, then λ2 is a fgspr-closed set but not a fuzzy semi-closed set in X. 

Theorem 3.24: Every fuzzy semi-pre-generalized closed set is a fgspr-closed set in X. 

Proof: Let λ be a fuzzy semi-pre-generalized closed set in a fuzzy topological space  X, τ . Suppose that λ ≤ μ, 

where μ is fuzzy regular open in X. Since every fuzzy semi-preclosed set is a fuzzy semi-pre generalized closed 

set [15] and every fuzzy semi-pre-generalized closed set is a fgsp-closed set, by Theorem 3.10 spcl λ  ≤ μ.  
Hence λ is a fgspr-closed set in X. 

The following example shows that the converse of the above theorem is not true. 

Example 3.25: In example 3.11, the fuzzy set α is a fgspr-closed set but not a fuzzy semi-pre-generalized closed 

set in X. 

Theorem 3.26: Every fuzzy regular closed set is a fgspr-closed set in X. 

Proof: Let λ be a fuzzy regular closed set in a fuzzy topological space X, τ . Suppose that λ ≤ μ, where μ is 

fuzzy regular open in X. Since every fuzzy regular closed set is a fuzzy closed set, by Theorem 3.2 spcl λ  ≤ μ.  
Hence λ is a fgspr-closed set in X. 

The following example shows that the converse of the above theorem is not true. 

Example 3.27: Let X = {a, b, c}, λ1 = {(a, 0.3), (b, 0.5), (c, 0.4)}, λ2 = {(a, 0.1), (b, 0.3), (c, 0.2)} and               

λ3 = {(a, 0.1), (b, 0.5), (c, 0.4)} be fuzzy sets of X. Let τ = {0, λ1, λ2, 1}, then λ3 is a fgspr-closed set but not a 

fuzzy regular closed set in X. 

Theorem 3.28: Every fuzzy generalized semi-closed set is a fgspr-closed set in X. 
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Proof: Let λ be a fuzzy generalized semi-closed set in a fuzzy topological space X, τ . Suppose that λ ≤ μ, 

where μ is fuzzy regular open in X. Since every fuzzy semi-closed set is a fuzzy generalized semi-closed set [6] 

and every fuzzy generalized semi-closed set is a fgsp-closed set, by Theorem 3.10 spcl λ  ≤ μ.  Hence λ is a 

fgspr-closed set in X. 

The following example shows that the converse of the above theorem is not true. 

Example 3.29: Let X = {a, b, c}, λ1 = {(a, 0.3), (b, 0.5), (c, 0.4)}, λ2 = {(a, 0.1), (b, 0.3), (c, 0.2)} and               

λ3 = {(a, 0), (b, 0.2), (c, 0.1)} be fuzzy sets of X. Let τ = {0, λ1, λ2, 1}, then λ3 is a fgspr-closed set but not a 

fuzzy generalized semi-closed set in X. 

Theorem 3.30: Every generalized fuzzy semi-closed set is a fgspr-closed set in X. 

Proof: Let λ be a generalized fuzzy semi-closed set in a fuzzy topological space X, τ . Suppose that λ ≤ μ, 

where μ is fuzzy regular open in X. Since every fuzzy semi-closed set is a generalized fuzzy semi-closed set 

[15] and every generalized fuzzy semi-closed set is a fgsp-closed set, by Theorem 3.10 spcl λ  ≤ μ.  Hence λ is 

a fgspr-closed set in X. 

The following example shows that the converse of the above theorem is not true. 

Example 3.31: In example 3.27, the fuzzy set λ3 is a fgspr-closed set but not a generalized fuzzy semi-closed set 

in X. 

Theorem 3.32: In a fuzzy topological space X, τ , if a fuzzy set λ is both fuzzy regular open and fgspr-closed, 

then λ is fuzzy semi-pre closed. 

Proof: Suppose a fuzzy set λ of a fuzzy topological space  X, τ  is both regular open and fgspr-closed. Let 

λ ≤ λ,  where λ is fuzzy regular open in X.  This implies that  spcl λ  ≤  λ, since λ is a fgspr-closed set. Also 

we have, λ ≤ spcl λ , which implies that spcl λ =  λ .  Hence λ is a fuzzy semi-pre closed set in X. 

Theorem 3.33: If a fuzzy set λ is fgspr-closed in X and spcl λ ∧   1 − spcl λ  =  0 then there is no non zero 

fuzzy regular closed set μ such that μ ≤ spcl λ  ∧   1 − λ . 
Proof: Suppose µ is any fuzzy regular closed set in X such that  μ ≤ spcl λ  ∧   1 − λ . Now  μ ≤ 1 − λ, this 

implies that  λ ≤ 1 −  μ, where 1 − µ is fuzzy regular open in X. Then spcl λ ≤ 1 −  μ, as λ is fgspr-closed set. 

This implies that μ ≤ 1 − spcl λ . Thus μ ≤ spcl λ  and μ ≤ 1 − spcl λ . Therefore                                      

μ ≤ spcl λ  ∧    1 − spcl λ   = 0.  Thus μ = 0.  Hence the result is proved. 

Theorem 3.34: If a fuzzy set λ is fgspr-closed in X such that λ ≤ μ ≤ spcl λ , then µ is also a fgspr-closed set 

in X. 

Proof: Let γ be a fuzzy regular open set in X such that μ ≤ γ.  Then λ ≤ γ.  Since λ is fgspr-closed set, then by 

definition, spcl λ ≤ μ. By hypothesis, μ ≤ spcl λ , so spcl μ ≤ spcl spcl λ  = spcl λ ≤ μ ≤  γ.           

(i.e) spcl μ  ≤ γ.  Hence μ is a fgspr-closed set in X.  

Theorem 3.35: The union of any two fgspr-closed sets is a fgspr-closed set. 

Proof: Let λ and µ be fgspr-closed sets in a fuzzy topological space X.  To prove that λ ∨  µ is a fgspr-closed 

set.  Let  λ ∨ μ ≤ γ, where γ be fuzzy regular open in X.  Then λ ≤ γ, μ ≤ γ and so spcl λ ≤  γ, spcl μ  ≤ γ as 

λ and μ are fgspr-closed sets.  This implies that spcl λ  ∨  spcl μ ≤  γ.  (i.e) spcl λ ∨  μ  ≤ γ.  Hence λ ∨  μ 

is a fgspr-closed set in X. 

Remark 3.36: The intersection of any two fgspr-closed sets in a fuzzy topological space X is not necessarily 

fgspr-closed as seen from the following example. 

Example 3.37: Let X = {a, b, c}, λ1 = {(a, 0.4), (b, 0.3), (c, 0.5)}, λ2 = {(a, 0.3), (b, 0.9), (c, 0.5)} and               

λ3 = {(a, 0.7), (b, 0.4), (c, 0.8)} be fuzzy sets of X. Let τ = {0, λ1, 1}, then λ2 and λ3 are fgspr-closed set but       

λ2 ∧ λ3 is not a fgspr-closed set in X. 

Remark 3.38: From the above results we get the following diagram. 
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IV. Fuzzy Generalized Semi Preregular Open Sets 

Definition 4.1: A fuzzy set λ of a fuzzy topological space  X, τ  is called fuzzy generalized semi preregular open 

(briefly fgspr-open) set if its complement 1 – λ is fgspr-closed set. 

Theorem 4.2: A fuzzy set λ of a fuzzy topological space X is fgspr-open iff  μ ≤ spint λ , whenever µ is fuzzy 

regular closed set and  μ ≤  λ . 

Proof: Suppose λ is fgspr-open set in a fuzzy topological space X.  Then 1 – λ is fgspr-closed set in X.  Let µ be 

fuzzy regular closed in X and μ ≤  λ. Then 1 − λ ≤ 1 − μ, where 1 − μ  is fuzzy regular open.  Since 1 – λ is a 

fgspr-closed set, we have spcl 1 −  λ ≤  1 −  μ. This implies that 1 −  1 − μ ≤ 1 − spcl(1 − λ).                     

(i.e) μ ≤ spint(λ) as spcl 1 − λ =  1 − spint λ  (by Lemma 1.5 [11]).   

Conversely, assume that μ ≤ spint λ , whenever μ ≤  λ  and  µ is fuzzy regular closed set in a fuzzy 

topological space X.  Let 1 − λ ≤ γ, where γ is fuzzy regular open set in X.  Then 1 −  γ ≤ λ, where 1 − γ is 
fuzzy regular closed set in X.  This implies that, 1 −  γ ≤ spint(λ). (i.e) 1 − spint  λ ≤ 1 −  1 − γ .           

(i.e) spint 1 − λ ≤ γ.  Hence 1 – λ is fgspr-closed set and so λ is fgspr-open set in X. 

Theorem 4.3: Every fuzzy open(fp-open, fα-open, frg-open, fgsp-open, fgpr-open, fgp-open, fg-open, fsp-open, 

fps-open, fs-open, fspg-open, fr-open, fgs-open, gfs-open) set is a fgspr-open set. 

Proof:  Let λ be fuzzy open(fp-open, fα-open, frg-open, fgsp-open, fgpr-open, fgp-open, fg-open, fsp-open, fps-

open, fs-open, fspg-open, fr-open, fgs-open, gfs-open) set in a fuzzy topological space X, τ .  Then 1 – λ is fuzzy 

closed set in X.  And so 1 – λ is fgspr-closed set in X by Theorem 3.2(3.4, 3.6, 3.8, 3.10, 3.12, 3.14, 3.16, 3.18, 

3.20, 3.22, 3.24, 3.26, 3.28, 3.30). Hence λ is a fgspr-open set in X.  

The following examples show that the converse of the above theorem is not true. 

Example 4.4: Let X = {a, b, c}, λ1 = {(a, 0.8), (b, 0.5), (c, 0.3)} and λ2 = {(a, 0.7), (b, 0.5), (c, 0.2)} be fuzzy 

sets of X. Let τ = {0, λ2, 1}, then λ1 is a fgspr-open set but not a fuzzy open set in X. 

Example 4.5: Let X = {a, b, c}, λ1 = {(a, 0), (b, 0.4), (c, 0.2)} and λ2 = {(a, 0.7), (b, 0.5), (c, 0.2)} be fuzzy sets 

of X. Let τ = {0, λ2, 1}, then λ1 is a fgspr-open set but not a fp-open set and a fα-open set in X. 

Example 4.6: Let X = {a, b, c}, λ1 = {(a, 0.5), (b, 0.4), (c, 1)} and λ2 = {(a, 0.7), (b, 0.5), (c, 0.2)} and              

λ3 = {(a, 0.6), (b, 1), (c, 0.4)} be fuzzy sets of X. Let τ = {0, λ1, λ2, 1}, then λ3 is a fgspr-open set but not a     

frg-open set in X. 

Example 4.7: Let X = {a, b, c}, α = {(a, 1), (b, 0), (c, 0)}, β = {(a, 0), (b, 1), (c, 0)},  γ = {(a, 1), (b, 1), (c, 0)},  

η = {(a, 1), (b, 0), (c, 1)} and µ = {(a, 0), (b, 1), (c, 1)} be fuzzy sets of X. Let τ = {0, α, β, γ, η, 1}, then µ is a 

fgspr-open set but not a fgsp-open set, a fgpr-open set, a fgp-open set, fg-open set, a fspg-open set, a fgs-open 

set and a gfs-open set in X. 

Example 4.8: Let X = {a, b, c}, λ1 = {(a, 0.3), (b, 0.5), (c, 0.8)} and  λ2 = {(a, 0), (b, 0.4), (c, 0.2)} be fuzzy sets 

of X. Let τ = {0, λ1, 1}, then λ2 is a fgspr-open set but not a fsp-open set, a fps-open, a fs-open set and a fuzzy 

regular open set in X. 

Theorem 4.9: If spint λ ≤ µ ≤ λ and if λ is fgspr-open, then µ is a fgspr-open set in a fuzzy topological space 

X.  

Proof: We have spint λ ≤ µ ≤ λ , then 1 − λ ≤ 1 − µ ≤ 1 − spint(λ). (i.e) 1 − λ ≤ 1 − µ ≤ spcl(1 − λ) and 

since 1 – λ is a fgspr-closed set and by Theorem 3.30, we have 1 − µ is a fgspr-closed set in X.  Hence µ is a 

fgspr-open set in X. 

Theorem 4.10: The intersection of any two fgspr-open sets is a fgspr-open set. 

Proof: Let λ and µ be fgspr-open set in a fuzzy topological space X. To prove that λ ∧  µ is fgspr-open set.  Let 

γ ≤ λ ∧  µ, where γ is fuzzy regular closed in X.  Then γ≤ λ, γ≤ µ  and so γ ≤ spint(λ), γ ≤ spint(µ) as λ and 

µ are fgspr-open sets.  This implies that γ ≤ spint λ  ∧  spint µ = spint  λ ∧  µ  .  (i.e) γ ≤ spint  λ ∧  µ .  

Hence λ ∧  µ is a fgspr-open set in X. 

Remark 4.11: The union of any two fgspr-open sets in a fuzzy topological space X is not necessarily fgspr-open 

as seen from the following example. 

Example 4.12: Let X = {a, b, c}, λ1 = {(a, 0.7), (b, 0.5), (c, 0.2)}, λ2 = {(a, 0), (b, 0.4), (c, 0.5)} and                     

λ3 = {(a, 0.6), (b, 1), (c, 0.4)} be fuzzy sets of X. Let τ = {0, λ1, 1}, then λ2 and λ3 are fgspr-open sets but λ2 ∨ λ3 

is not a fgspr-open set in X. 

Theorem 4.13: If a fuzzy set λ is fgspr-closed set and spcl (λ) ∧  1 − spcl λ  = 0 then spcl λ ∧  1 − λ  is a 

fgspr-open set in X. 

Proof: Let λ be fgspr-closed set in a fuzzy topological space X.  Let  spcl λ ∧  1 − λ  and µ is fuzzy regular 

closed set in X.  By Theorem 3.31, µ is zero and so µ ≤ spint(spcl λ ∧  1 − λ ).  By Theorem 4.2, spcl λ ∧
 1 − λ   is a fgspr-open set in X. 

V. Fgspr-closure and Fgspr-interior 

In this section, fgspr-closure (fgspr-cl) and fgspr-interior (fgspr-int) of a fuzzy set is defined as follows. 

Definition 5.1: For any fuzzy set λ in any fuzzy topological space, 

fgspr-cl(λ) = ∧{µ: µ is a fgspr-closed set and λ ≤ µ} 
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fgspr-int(λ) = ∨{µ: µ is a fgspr-open set and λ ≥ µ} 

Theorem 5.2: Let λ be any fuzzy set in a fuzzy topological space X, τ . Then fgspr-cl(1 – λ) = 1 – fgspr-int(λ) 

and fgspr-int(1 – λ) = 1 – fgspr-cl(λ)    

Proof: We know that a fgspr-open set µ ≤ λ is precisely the complement of a fgspr-closed set 1 – µ ≥ 1 – λ and 

thus fgspr-int(λ) = ∨{µ: µ is a fgspr-open set and λ ≥ µ} = fgspr-int(λ) = ∨{1 – µ :1 – µ is a fgspr-closed set and 

1 – µ  ≥ 1 – λ} = 1 – ∧{1 – µ: 1 – µ is a fgspr-closed set and 1 – µ  ≥ 1 – λ } =  1 – fgspr-cl(1 – λ). Thus fgspr-

cl(1 – λ) = 1 – fgspr-int(λ). 

Replacing λ by 1 – λ in the previous result we get, fgspr-cl(λ) = 1 – fgspr-int(1 – λ).  Thus fgspr-int(1 – λ) =      

1 – fgspr-cl(λ). 

Theorem 5.3: In a fuzzy topological space X, τ , a fuzzy set λ is fgspr-closed set then λ = fgspr-cl(λ) 

Proof: Let λ be a fgspr-closed set in a fuzzy topological space X, τ . Then we have fgspr-cl(λ) ≤ λ.  But λ ≤ 

fgspr-cl(λ) always.  Therefore λ = fgspr-cl(λ). 

Theorem 5.4: In a fuzzy topological space X the following results hold for fgspr-closure. 

(i) fgspr-cl(0) = 0, fgspr-cl(1) = 1 

(ii) λ ≤ fgspr-cl(λ) ≤ f-cl(λ)  

(iii) fgspr-cl(fgspr-cl(λ)) = fgspr-cl(λ) 

Proof: Let λ be a fuzzy set in a fuzzy topological space X, τ . 

(i) Obvious. 

(ii) Every fuzzy closed set is a fgspr-closed set. By Theorem 3.2, fgspr-cl(λ) ≤ f-cl(λ) and by definition 

5.1, λ ≤ fgspr-cl(λ).  Hence λ ≤ fgspr-cl(λ) ≤ f-cl(λ). 

(iii) By Theorem 5.3, fgspr-cl(fgspr-cl(λ)) = fgspr-cl(λ), since fgspr-cl(λ) is fgspr closed. 

Theorem 5.5: In a fuzzy topological space X the following results hold for fgspr-closure. 

(i) fgspr-cl(λ) ≤ fgspr-cl(µ) if λ ≤ µ 

(ii) fgspr-cl(λ) ∨ fgspr-cl(µ) ≤ fgspr-cl(λ ∨ µ)  

(iii) fgspr-cl(λ ∧ µ) ≤ fgspr-cl(λ) ∧ fgspr-cl(µ) 

Proof: Let λ and µ be fuzzy sets in a fuzzy topological space X, τ . 

(i) Since λ ≤ µ, a fgspr-closed set containing µ, contains λ also. Therefore fgspr-cl(λ) ≤ fgspr-cl(µ). 

(ii) Let λ ≤ λ ∨ µ and µ ≤ λ ∨ µ. This implies that fgspr-cl(λ) ≤ fgspr-cl(λ ∨ µ) and fgspr-cl(µ) ≤          

fgspr-cl(λ ∨ µ) by (i).  Hence fgspr-cl(λ) ∨ fgspr-cl(µ) ≤ fgspr-cl(λ ∨ µ). 

(iii) Let λ ∧ µ ≤ λ and λ ∧ µ ≤ µ. This implies that fgspr-cl(λ ∧ µ) ≤ fgspr-cl(λ) and fgspr-cl(λ ∧ µ) ≤ 

fgspr-cl(µ) by (i).  Hence fgspr-cl(λ ∧ µ) ≤ fgspr-cl(λ) ∧ fgspr-cl(µ). 

Remark 5.6: For any two fuzzy sets λ and µ, fgspr-cl(λ) = fgspr-cl(µ) does not imply that λ = µ. This is shown 

by the following example. 

Example 5.7: Let X = {a, b, c}, α = {(a, 0), (b, 0), (c, 1)}, β = {(a, 1), (b, 0), (c, 1)}, λ = {(a, 0), (b, 0), (c, 1)} 

and µ = {(a, 0), (b, 1), (c, 1)} be fuzzy sets of X. Let τ = {0, α, β, 1}, then fgspr-cl(λ) = fgspr-cl(µ) = 1. It 

follows that, fgspr-cl(λ) = fgspr-cl(µ) but λ ≠ µ. 

Theorem 5.8: In a fuzzy topological space X, τ , a fuzzy set λ is fgspr-open iff λ = fgspr-int(λ).                 

Proof: Let λ be a fgspr-open set in a fuzzy topological space X, τ . Then we have λ ≤ fgspr-int(λ). But         

fgspr-int(λ) ≤ λ always.  Therefore λ = fgspr-int(λ). 

Suppose that λ = fgspr-int(λ) and by definition 5.1, fgspr-int(λ) is a fgspr-open set. Then λ is a fgspr-open set in 

X. 

Theorem 5.9: In a fuzzy topological space X the following results hold for fgspr-interior. 

(i) fgspr-int(0) = 0, fgspr-int(1) = 1 

(ii) f-int(λ) ≤ fgspr-int(λ) ≤ λ 

(iii) fgspr-int(fgspr-int(λ)) = fgspr-int(λ) 

Proof: Let λ be a fuzzy set in a fuzzy topological space X, τ . 

(i) Obvious. 

(ii) Every fuzzy open set is a fgspr-open set. By Theorem 4.3, f-int(λ) ≤ fgspr-int(λ) and by definition 

5.1, fgspr-int(λ) ≤ λ.  Hence f-int(λ) ≤ fgspr-int(λ) ≤ λ. 

(iii) By Theorem 5.8, fgspr-int(fgspr-int(λ)) = fgspr-int(λ), since fgspr-int(λ) is fgspr open. 

Theorem 5.10: In a fuzzy topological space X the following results hold for fgspr-interior. 

(i) fgspr-int(λ) ≤ fgspr-int(µ) if λ ≤ µ 

(ii) fgspr-int(λ) ∨ fgspr-int(µ) ≤ fgspr-int(λ ∨ µ)  

(iii) fgspr-int(λ ∧ µ) ≤ fgspr-int(λ) ∧ fgspr-int(µ) 

Proof: Let λ and µ be fuzzy sets in a fuzzy topological space X, τ . 

(i) Since λ ≤ µ, a fgspr-open set contained in λ is also contained in µ.  Therefore fgspr-int(λ) ≤ fgspr-

int(µ). 

(ii) Let λ ≤ λ ∨ µ and µ ≤ λ ∨ µ. This implies that fgspr-int(λ) ≤ fgspr-int(λ ∨ µ) and fgspr-int(µ) ≤ 

fgspr-intl(λ ∨ µ) by (i).  Hence fgspr-int(λ) ∨ fgspr-int(µ) ≤ fgspr-int(λ ∨ µ)  
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(iii) Let λ ∧ µ ≤ λ and λ ∧ µ ≤ µ. This implies that fgspr-int(λ ∧ µ) ≤ fgspr-int(λ) and fgspr-int(λ ∧ µ) ≤ 

fgspr-int(µ) by (i). Hence fgspr-int(λ ∧ µ) ≤ fgspr-int(λ) ∧ fgspr-int(µ) 

Remark 5.11: For any two fuzzy sets λ and µ, fgspr-int(λ) = fgspr-int(µ) does not imply that λ = µ. This is 

shown by the following example. 

Example 5.12: Let X = {a, b, c}, α = {(a, 0), (b, 0), (c, 1)}, β = {(a, 1), (b, 0), (c, 1)}, λ = {(a, 1), (b, 0), (c, 0)} 

and µ = {(a, 0), (b, 1), (c, 0)} be fuzzy sets of X. Let τ = {0, α, β, 1}, then fgspr-int(λ) = fgspr-int(µ) = 0.  It 

follows that, fgspr-int(λ) = fgspr-int(µ) but λ ≠ µ. 

 

VI. Fgspr – frontier of a set 
Definition 6.1: fgspr-cl(λ) – fgspr-int(λ) is defined to be the fgspr-frontier of λ in a fuzzy topological space 
 X, τ  and is denoted by fgspr-fr(λ). 

Some basic properties of fgspr-fr(λ) are proved in the following: 

Theorem 6.2: In a fuzzy topological space X the following results hold 

(i) fgspr-cl(λ) = fgspr-int(λ) ∨ fgspr-fr(λ) 

(ii) fgspr-cl(λ) ∧ fgspr-fr(λ) = fgspr-fr(λ) 

(iii) fgspr-int(λ) ∧ fgspr-fr(λ) =  0 

(iv) fgspr-fr(λ) = fgspr-cl(λ) ∧ fgspr-cl(1 – λ) 

Proof: By definition of fgspr-fr(λ), we have 

(i) fgspr-int(λ) ∨ fgspr-fr(λ) = fgspr-int(λ) ∨ [fgspr-cl(λ) – fgspr-int(λ)] = fgspr-cl(λ). 

(ii) fgspr-cl(λ) ∧ fgspr-fr(λ) = fgspr-cl(λ) ∧ [fgspr-cl(λ) – fgspr-int(λ)] = fgspr-cl(λ) – fgspr-int(λ) = 

fgspr-fr(λ). 

(iii) fgspr-int(λ) ∧ fgspr-fr(λ) = fgspr-int(λ) ∧ [fgspr-cl(λ) – fgspr-int(λ)] = 0. 

(iv) fgspr-fr(λ) = fgspr-cl(λ) – fgspr-int(λ) = fgspr-cl(λ) ∧ [1 – fgspr-int(λ)] = fgspr-cl(λ) ∧            

fgspr-cl(1 – λ) by theorem 5.2. 

Theorem 6.3: In a fuzzy topological space X the following results hold 

(i) fgspr-fr(λ) = fgspr-fr(1 – λ) 

(ii) If λ is fgspr open then λ ∧ fgspr-fr(λ) = 0 

(iii) fgspr-fr(λ) = 0 if λ is fgspr-open as well as fgspr-closed. 

Proof: By definition of fgspr-fr(λ), we have 

(i) fgspr-fr(λ) = fgspr-cl(λ) – fgspr-int(λ) = fgspr-cl(λ) ∧ [1 – fgspr-int(λ)] = fgspr-cl(λ) ∧                   

fgspr-cl(1 – λ) = fgspr-cl(1 – λ) ∧ [1 – fgspr-int(1 – λ) = fgspr-cl(1 – λ) – fgspr-int(1 – λ) =      

fgspr-fr(1 – λ) as by theorem 5.2. 

(ii) Let λ be a fgspr open set in fuzzy topological space 𝑋, 𝜏 . Then λ = fgspr-int(λ).  Now                   

λ ∧ fgspr-fr(λ) = fgspr-int(λ) ∧ fgspr-fr(λ) = 0, as by Theorem 6.2.  Hence the proof. 

(iii) Let λ be a fgspr open set and fgspr closed set in a fuzzy topological space X.  This implies that      

λ = fgspr-int(λ) and  λ = fgspr-cl(λ).  Then fgspr-fr(λ) = fgspr-cl(λ) – fgspr-int(λ) = 0.  Hence the 

proof. 

Theorem 6.4: In a fuzzy topological space (𝑋, 𝜏) the following properties hold for fgspr-fr(λ) 

(i) fgspr-int(λ) = λ – fgspr-fr(λ) 

(ii) 1 – fgspr-fr(λ) = fgspr-int(λ) ∨ fgspr-int(1 – λ) 

Proof:  

(i) Since fgspr-fr(λ) = fgspr-cl(λ) ∧ fgspr-cl(1 - λ) by theorem 6.2.  Therefore  λ – fgspr-fr(λ) =           

λ – [fgspr-cl(λ) ∧ fgspr-cl(1 – λ)] = [λ – fgspr-cl(λ)]  ∨ [λ – fgspr-cl(1 – λ)] = λ – fgspr-cl(1 – λ) = 

λ ∧  [1 – fgspr-cl(1 – λ)] = λ ∧  [1 – [1 – fgspr-int(λ)] = λ ∧ fgspr-int(λ) = fgspr-int(λ) as by 

theorem 5.2. 

(ii) 1 – fgspr-fr(λ) =1 – [fgspr-cl(λ) ∧ fgspr-cl(1 – λ)] = [1 – fgspr-cl(λ)] ∨ [1 – fgspr-cl(1 – λ)] =   

fgspr-int(1 – λ) ∨ [1 – [1 – fgspr-int(λ)] = fgspr-int(1 – λ) ∨ fgspr-int(λ) as by theorem 5.2. 

 

VII. Fuzzy semi preregular 𝑇1/2 space and  

Fuzzy semi preregular 𝑇1/2
∗  space 

Definition 7.1: A fuzzy topological space (𝑋, 𝜏) is called a fuzzy semi preregular 𝑇1/2  space if every fgspr-

closed set is a fuzzy semi-pre closed set. 

Theorem 7.2: A fuzzy topological space (𝑋, 𝜏) is a fuzzy semi preregular 𝑇1/2 space iff every fgspr-open set is 

a fuzzy semi-pre open set in X. 

Proof: Suppose X is a fuzzy semi preregular 𝑇1/2 space.  Let µ be fgspr-open set in X.  Then 1–µ is a          

fgspr-closed set in X.  By Definition 7.1, 1– µ is a fuzzy semi-pre closed set in X.  Therefore µ is a fuzzy semi-

pre open set in X. 
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Conversely, assume that every fgspr-open set in X is a fuzzy semi-pre open set in X. Let 𝛾 be fgspr-closed set in 

X.  Then 1 − 𝛾 is a fgspr-open set in X.  By hypothesis, 1 − 𝛾 is a fuzzy semi-pre open set in X.  Therefore 𝛾 is 

a fuzzy semi-pre closed set in X. Hence X is fuzzy semi preregular 𝑇1/2 space. 

Theorem 7.3: Every fuzzy semi preregular 𝑇1/2  space is fuzzy pre semi 𝑇1/2space. 

Proof: Let X be a fuzzy semi preregular 𝑇1/2 space and let 𝛾 be fuzzy pre semi closed set in X.  By Theorem 

3.20, 𝛾 is a fgspr-closed set in X and so 𝛾 is a fuzzy semi pre closed set in X. Hence X is fuzzy pre semi 

𝑇1/2 space. 

Theorem 7.4: Every fuzzy semi preregular 𝑇1/2  space is fuzzy semi pre 𝑇1/2  space. 

Proof: Let X be a fuzzy semi preregular 𝑇1/2 space and let 𝛾 be fgsp-closed set in X.  By Theorem 3.10, 𝛾 is a 

fgspr-closed set in X and so 𝛾 is a fuzzy semi pre closed set in X. Hence X is fuzzy semi pre 𝑇1/2 space. 

Theorem 7.5: Every fuzzy semi preregular 𝑇1/2  space is fuzzy semi pre 𝑇1/3 space. 

Proof: Let X be a fuzzy semi preregular 𝑇1/2 space and let 𝛾 be fgsp-closed set in X.  By Theorem 3.10, 𝛾 is a 

fgspr-closed set in X and so 𝛾  is a fuzzy semi pre closed set in X. Every fuzzy semi-pre closed set is a fuzzy pre 

semi closed set. Hence X is fuzzy semi pre 𝑇 1/3 space. 

The following example shows that the converse of the above theorems is not true. 

Example 7.6: Let X = {a, b, c}, α = {(a, 1), (b, 0), (c, 0)}, β = {(a, 0), (b, 1), (c, 1)}, γ = {(a, 1), (b, 1), (c, 0)} be 

fuzzy sets of X. Let 𝜏  = {0, α, 1}, then β is fuzzy pre semi closed, fgsp-closed and fuzzy semi-pre closed in X.  

Hence (X, τ) is fuzzy pre semi T1/2 space, fuzzy semi pre T1/2 space and fuzzy semi pre T1/3 space. Now γ is a 

fgspr-closed set but not a fuzzy semi pre closed set in X.  Therefore (X, τ) is not fuzzy semi preregular T1/2 

space.   

Definition 7.7: A fuzzy topological space (X, τ) is called a fuzzy semi preregular T1/2
∗  space if every fgspr-

closed set is a fuzzy closed set. 

Theorem 7.8: A fuzzy topological space (X, τ) is a fuzzy semi preregular T1/2
∗  space iff every fgspr-open set is a 

fuzzy open set in X. 

Proof: Suppose X is a fuzzy semi preregular T1/2
∗  space.  Let µ be fgspr-open set in X.  Then 1–µ is a fgspr-

closed set in X. By Definition 7.7, 1–µ is a fuzzy closed set in X.  Therefore µ is a fuzzy open set in X. 

Conversely, assume that every fgspr-open set in X is a fuzzy open set in X. Let γ be fgspr-closed set in X.  Then 

1 − γ is a fgspr-open set in X.  By hypothesis, 1 − γ is a fuzzy open set in X.  Therefore γ is a fuzzy closed set in 

X. Hence X is fuzzy semi preregular T1/2
∗  space. 

Theorem 7.9: Every fuzzy semi preregular T1/2
∗

 space is fuzzy semi preregular T1/2 space. 

Proof: Let X be a fuzzy semi preregular T1/2
∗

  space and let λ be fgspr-closed set in X. By Definition 7.7,  λ is a 

fuzzy closed set in X. Every fuzzy closed set is fuzzy semi-pre closed set and so λ  is fuzzy semi-pre closed set 

in X. Hence X is fuzzy semi preregular T1/2 space. 

Theorem 7.10: Every fuzzy semi preregular T1/2
∗

 space is fuzzy  T1/2 space. 

Proof: Let X be a fuzzy semi preregular T1/2
∗

 space and let λ be fg-closed set in X. By Theorem 3.16,  λ is a 

fgspr-closed set in X and so λ fuzzy closed in X by Definition 7.7. Hence X is fuzzy T1/2 space. 

The following example shows that the converse of the above theorems is not true. 

Example 7.11: Let X = {a, b, c}, α = {(a, 0), (b, 1), (c, 0)}, β = {(a, 1), (b, 0), (c, 1)}, γ = {(a, 1), (b, 0), (c, 0)} 

be fuzzy sets of X. Let τ = {0, α, 1}, then β is fgspr-closed, fg-closed, fuzzy semi-pre closed and fuzzy closed in 

X.  Hence (X, τ) is fuzzy semi preregular T1/2 space and fuzzy T1/2 space. Now γ is a fgspr-closed set but not a 

fuzzy closed set in X.  Therefore (X, τ) is not fuzzy semi preregular T1/2
∗

 space.   

 

References 

[1]   K. K Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, 

J.Math.Anal.Appl. 82(1)(1981), 14 – 32. 

[2]  G. Balasubramanian and P. Sundaram, “On some generalizations of fuzzy continuous functions, Fuzzy 

Sets and Systems, 86(1)(1997), 93 – 100. 

[3]  G. Balasubramanian, On Fuzzy Pre - Separation axioms, Bull.Cal.Math.Soc., 90(1998), 427 – 434. 

[4]  A. S. Bin Shahna, On fuzzy strong continuity and fuzzy pre – continuity, Fuzzy Sets and Systems, 

44(1991), 303 – 308. 

[5]  M. Caldas, Govindappa Navalagi and R. Saraf, On Some Functions Concerning Fuzzy pg - closed sets, 

Proyecciones, 25(3)(2006) 262 – 271. 

[6]  C. L. Chang, Fuzzy Topological Spaces, J.Math.Anal.Appl. 24(1968), 182 – 190.  

[7] T.Fukutake, R.K.Saraf, M.Caldas and S.Mishra, Mappings via Fgp-closed sets, Bull.of Fukuoka Univ. 

of Edu. 52(2003), 11-20. 



Fuzzy Generalized Semi Preregular Closed… 

                                      www.ijhssi.org                                                        71 | Page 

[8] Govindappa Navalagi, A. S. Chandrashekarappa and S. V. Gurushantanavar, “On GSPR – Closed Sets 

in Topological Spaces, Int.JI.Math.Comp.Appl., Vol 2, No. 1 – 2(2010), 51 – 58. 

[9]  Govindappa Navalagi , A. S. Chandrashekharappa, gspr - neighbourhoods in topological spaces, 

Amer.Jr.Math.Sci., Vol 2(1)(2013) 183 – 191. 

[10]  H. Maki, T. Fukutake, M. Kojima, H. Harada, Generalized closed sets in fuzzy topological spaces, 

I.Meetings on Topological Spaces, Theory and its Applications, (1998), 23-36. 

[11]  S. Murugesan and P. Thangavelu, Fuzzy Pre-semi-closed Sets, Bull.Malays.Math.Sci.Soc. 

(2)31(2)(2008), 223 – 232.   

[12]  J. H. Park and J. K. Park, On regular generalized fuzzy closed sets and generalization of fuzzy 

continuous functions, Indian J. Pure Appl. Math., 343(7)(2003), 1013 – 1024.  

[13] R. K. Sharaf and M. Khanna, Fuzzy Generalized Semi - Pre Closed Sets, J.Tri.Math.Soc., 3(2001),       

59 – 68. 

[14] R. K. Sharaf and M. Khanna, On gs - closed sets in fuzzy topology, J.Ind.Acad.Math., 25(1)(2003),  

133 – 143. 

[15] R. K. Sharaf, Govindappa Navalagi and M. Khanna, On Fuzzy Semi-Pre-Generalized Closed Sets, 

Bull.Malays.Math.Sci.Soc.(2)28(1)(2005), 19 – 30.   

[16] S. S. Thakur and S. Singh, On Fuzzy Semi-Pre open and Fuzzy Semi-Pre Continuity, Fuzzy Sets and 

Systems, 98(3)(1998), 383 – 391. 

[17]   Tuna Hatice Yalvac, Semi-interior and Semi-closure of a fuzzy set, J.Math.Anal.Appl.(132)(1988),  

356 – 364. 

[18]  A. Vadivel, K. Devi and D. Sivakumar, Fuzzy Generalized Preregular Closed Sets in fuzzy topological 

spaces, Antartica J.Math., 9(6)(2012), 525 – 535. 

[19]  L. A. Zadeh, Fuzzy sets, Information and Control, 8(1965), 338 – 353. 


